These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway.
    Author: Tsui C, Raguraj A, Pickart CM.
    Journal: J Biol Chem; 2005 May 20; 280(20):19829-35. PubMed ID: 15772086.
    Abstract:
    Different ubiquitin modifications to proliferating cell nuclear antigen (PCNA) signal distinct modes of lesion bypass in the RAD6 pathway of DNA damage tolerance. The modification of PCNA with monoubiquitin signals an error-prone bypass, whereas the extension of this modification into a Lys-63-linked polyubiquitin chain promotes error-free bypass. Chain formation is catalyzed by the Mms2/Ubc13 conjugating enzyme variant/conjugating enzyme (UEV.E2) complex together with the Rad5 ubiquitin ligase. In vitro studies of this UEV.E2 complex have identified a ubiquitin binding site that is mainly localized on Mms2. However, the role of this site in DNA damage tolerance and the molecular features of the ubiquitin/Mms2 interaction are poorly understood. Here we identify two molecular determinants, the side chains of Mms2-Ile-57 and ubiquitin-Ile-44, that are required for chain assembly in vitro and error-free lesion bypass in vivo. Mutating either of these side chains to alanine elicits a severe 10-20-fold inhibition of chain synthesis that is caused by compromised binding of the acceptor ubiquitin to Mms2. These results suggest that the ubiquitin binding site of Mms2 is necessary for error-free lesion bypass in the RAD6 pathway and provide new insights into ubiquitin recognition by UEV proteins.
    [Abstract] [Full Text] [Related] [New Search]