These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins.
    Author: Goff SA, Cone KC, Chandler VL.
    Journal: Genes Dev; 1992 May; 6(5):864-75. PubMed ID: 1577278.
    Abstract:
    The B, R, C1, and Pl genes regulating the maize anthocyanin pigment biosynthetic pathway encode tissue-specific transcriptional activators. B and R are functionally duplicate genes that encode proteins with the basic-helix-loop-helix (b-HLH) motif found in Myc proteins. C1 and Pl encode functionally duplicate proteins with homology to the DNA-binding domain of Myb proteins. A member of the b-HLH family (B or R) and a member of the myb family (C1 or Pl) are both required for anthocyanin pigmentation. Transient assays in maize and yeast were used to analyze the functional domains of the B protein and its interaction with C1. The results of these studies demonstrate that the b-HLH domain of B and most of its carboxyl terminus can be deleted with only a partial loss of B-protein function. In contrast, relatively small deletions within the B amino-terminal-coding sequence resulted in no trans-activation. Analysis of fusion constructs encoding the DNA-binding domain of yeast GAL4 and portions of B failed to reveal a transcriptional activation domain in the B protein. However, an amino-terminal domain of B was found to recruit a transcriptional activation domain by an interaction with C1. Formation of this complex resulted in the activation of a synthetic promoter containing GAL4 recognition sites, demonstrating that this interaction does not require the normal target promoters for B and C1. B and C1 fusions with yeast GAL4 DNA-binding and transcriptional activation domains were also found to interact when synthesized and assayed in yeast. The domains responsible for this interaction map to a region that contains the Myb homologous repeats of the C1 protein and to the amino terminus of the B protein, which does not contain the b-HLH motif. These studies suggest that the regulation of the maize anthocyanin pigmentation pathway involves a direct interaction between members of two distinct classes of transcriptional activators.
    [Abstract] [Full Text] [Related] [New Search]