These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. Author: Vats P, Banerjee UC. Journal: J Ind Microbiol Biotechnol; 2005 Apr; 32(4):141-7. PubMed ID: 15776271. Abstract: Aspergillus niger van Teighem, isolated in our laboratory from samples of rotten wood logs, produced extracellular phytase having a high specific activity of 22,592 units (mg protein)-1 . The enzyme was purified to near homogeneity using ion-exchange and gel-filtration chromatography. The molecular properties of the purified enzyme suggested the native phytase to be oligomeric, with a molecular weight of 353 kDa, the monomer being 66 kDa. The purified enzyme exhibited maximum activity at pH 2.5 and 52-55 degrees C. The enzyme retained 97% activity after a 24-h incubation at 55 degrees C in the presence of 10 mM glycine, while 87% activity was retained when no thermoprotectant was added. Phytase activity was not affected by most metal ions, inhibitors and organic solvents. Non-ionic and cationic detergents (0.1-5%) stabilise the enzyme, while the anionic detergent (SDS), even at a 0.1% level, severely inhibited enzyme activity. The chaotropic agents guanidinium hydrochloride, urea, and potassium iodide (0.5-8 M), significantly affected phytase activity. The maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) were 1,074 IU/mL and 606 microM, respectively, with a catalytic turnover number of 3x10(5) s-1 and catalytic efficiency of 3.69x10(8) M-1 s-1.[Abstract] [Full Text] [Related] [New Search]