These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Learning deficits induced by sleep deprivation and recovery are not associated with altered [(3)H]muscimol and [(3)H]flunitrazepam binding. Author: Dubiela FP, Oliveira MG, Moreira KM, Nobrega JN, Tufik S, Hipólide DC. Journal: Brain Res; 2005 Mar 10; 1037(1-2):157-63. PubMed ID: 15777764. Abstract: Several studies have shown that sleep deprivation produces deficits in learning tasks, but mechanisms underlying these effects remain unclear. Other lines of evidence indicate an involvement of brain GABA systems in cognitive processes. Here, we investigated the possibility that alterations in GABA(A) or benzodiazepine (BDZ) receptor binding might underlie avoidance deficits induced by sleep deprivation. Rats were deprived of sleep for 96 h using the platform method and then trained in a step-through inhibitory avoidance task, or allowed to recover sleep for 24 h before training (sleep rebound group). Thirty minutes after training, animals were given a retention test. Both sleep-deprived and sleep-recovered animals showed a significant impairment in avoidance responding compared to cage controls, and the sleep-deprived group performed significant worse than the sleep-recovered group. A separate group of animals was sacrificed either immediately after 96 h of sleep deprivation or after 96 h of sleep deprivation followed by 24 h of sleep recovery. [(3)H]muscimol and [(3)H]flunitrazepam binding were examined by quantitative autoradiography in 42 brain regions, including areas involved in cognitive processes. No significant differences among groups were found in any brain region, except for a reduction in [(3)H]flunitrazepam binding in the frontal cortex of sleep-recovered animals. These results confirm the deleterious effects of sleep loss on inhibitory avoidance learning, but suggest that such deficits cannot be attributed to altered GABA(A) or BDZ binding in brain.[Abstract] [Full Text] [Related] [New Search]