These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of hepatocyte growth factor induction in human skin fibroblasts by retinoic acid. Author: Takami Y, Yamamoto I, Tsubouchi H, Gohda E. Journal: Biochim Biophys Acta; 2005 Mar 22; 1743(1-2):49-56. PubMed ID: 15777839. Abstract: Topical treatment of skin with all-trans-retinoic acid (ATRA), the major biologically active form of vitamin A, results in hyperproliferation of basal keratinocytes, leading to an accelerated turnover of epidermis cells and thickening of the epidermis, probably via induction of production of paracrine growth factors for keratinocytes in epidermal suprabasal keratinocytes and/or dermal fibroblasts. Since hepatocyte growth factor (HGF) is a factor mitogenic to epidermal keratinocytes secreted from dermal fibroblasts, the effect of ATRA on basal and induced HGF production in human dermal fibroblasts in culture was examined. ATRA alone did not induce HGF production, but it significantly enhanced HGF production induced by the cAMP-elevating agent cholera toxin or the membrane-permeable cAMP analog 8-bromo-cAMP. Cholera toxin-induced activation of cAMP responsive element (CRE)-binding protein (CREB) was enhanced by pretreating cells with ATRA for 24 h. In contrast, HGF production induced by epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) was potently inhibited by ATRA. These modulatory effects of ATRA were different from the effects of transforming growth factor-beta1 (TGF-beta) and dexamethasone, both of which inhibited HGF production induced by all of the four inducers. Up-regulation of HGF gene expression by cholera toxin and EGF was also enhanced and inhibited, respectively, by ATRA. Both 9-cis-retinoic acid (9-cis-RA) and 13-cis-retinoic acid (13-cis-RA), which are stereo-isomers of ATRA, showed a modulatory effect on HGF induction similar to that of ATRA. These results suggest that ATRA augments the induction of HGF production caused by increased intracellular cAMP.[Abstract] [Full Text] [Related] [New Search]