These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of reactive oxygen species in cyclic stretch-induced NF-kappaB activation in human fibroblast cells. Author: Amma H, Naruse K, Ishiguro N, Sokabe M. Journal: Br J Pharmacol; 2005 Jun; 145(3):364-73. PubMed ID: 15778740. Abstract: 1 Uniaxial cyclic stretch leads to an upregulation of cyclooxygenase (COX)-2 through increases in the intracellular Ca(2+) concentration via the stretch-activated (SA) channel and following nuclear factor kappa B (NF-kappaB) activation in human fibroblasts. However, the signaling mechanism as to how the elevated Ca(2+) activates NF-kappaB is unknown. In this study, we examined the involvement of reactive oxygen species (ROS) as an intermediate signal, which links the elevated Ca(2+) with NF-kappaB activation. 2 4-Hydroxy-2-nonenal (HNE) was produced and modified IkappaB peaking at 2 min. The phosphorylation of IkappaB peaked at 8 min. HNE modification and IkappaB phosphorylation, NF-kappaB translocation to the nucleus, and following COX-2 production were inhibited by extracellular Ca(2+) removal or Gd(3+) application, as well as by the antioxidants. The stretch-induced Ca(2+) increase was inhibited by extracellular Ca(2+) removal, or Gd(3+) application. 3 IkappaB kinase (IKK) activity peaked at 4 min, which was inhibited by extracellular Ca(2+) removal, Gd(3+) or the antioxidants. IKK was also HNE-modified and, similarly to IkappaB, peaked at 2 min. IKK under static conditions was activated by exogenously applied HNE at a relatively low dose (1 microM), while it was inhibited at higher concentrations, suggesting that HNE could be one of the candidate signals in the stretch-induced NF-kappaB activation. 4 The present study suggests that the NF-kappaB activation by cyclic stretch is mediated by the following signal cascade: SA channel activation --> intracellular Ca(2+) increase --> production of ROS --> activation of IKK --> phosphorylation of IkappaB --> NF-kappaB translocation to the nucleus.[Abstract] [Full Text] [Related] [New Search]