These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of the C-terminal peptide of the alphaS subunit of the G protein on the regulation of adenylyl cyclase and protein kinase A activities by biogenic amines and glucagon in mollusk and rat muscles.
    Author: Shpakov AO, Korol'kov VI, Plesneva SA, Kuznetsova LA, Pertseva MN.
    Journal: Neurosci Behav Physiol; 2005 Feb; 35(2):177-86. PubMed ID: 15779331.
    Abstract:
    The C-terminal parts of the a subunits of heteromeric G proteins play an important role in the functional linkage of G proteins with receptors of the serpentine type. The present report describes studies of the effects of the C-terminal octapeptide 387-394 of the alphaS subunit of the mammalian G protein on the transmission of the hormonal signal via the hormone-sensitive adenylyl cyclase signal system, whose major components are receptors of the serpentine type, G proteins, and the enzymes adenylyl cyclase and protein kinase A. The peptide synthesized here, 387-394 amide (10(-7) - 10(-4) M), dose-dependently decreased adenylyl cyclase and protein kinase A activities stimulated by serotonin and glucagon in smooth muscle from the freshwater bivalve mollusk Anodonta cygnea and by the beta agonist isoproterenol in rat skeletal muscle. At a concentration as low as 10(-7) M, the peptide released potentiation of the stimulatory effects of hormones on adenylyl cyclase activity due to the non-hydrolyzable guanine nucleotide analog Gpp[NH]p. At the same time, it had almost no effect on the stimulation of adenylyl cyclase activity by non-hormonal agents (NaF, Gpp[NH]p, and forskolin). The inhibitory effects of hormones on adenylyl cyclase and protein kinase A activities persisted in the presence of the peptide. Our data demonstrate the importance of the C-terminal part of the alphaS subunit of the stimulatory G protein for its functional linkage with receptors of the serpentine type and throw light on the molecular mechanisms of the interactions between G proteins and receptors.
    [Abstract] [Full Text] [Related] [New Search]