These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. Author: White J, Hamilton KA, Neff SR, Kauer JS. Journal: J Neurosci; 1992 May; 12(5):1772-80. PubMed ID: 1578269. Abstract: In the salamander olfactory bulb, mitral output cells exhibit a variety of responses to electrical and odor stimulation, but the cellular interactions within the bulb that give rise to these responses are not completely understood. We have developed a computer model to investigate whether available data are sufficient for formulating a simulated bulb circuit that can generate realistic mitral cell output. A set of coupled difference equations incorporating mathematical descriptions of anatomical and physiological data was used to calculate changes in membrane potentials of olfactory bulb neurons over time. Model mitral cells showed responses to simple orthodromic and antidromic electrical stimuli that were similar to salamander intracellular responses. Without changing the parameters of the equations, simulated odor stimuli were applied that elicited complex patterns of mitral depolarization, spike activation, and hyperpolarization that emerged from the interactions among the numerous elements in the model. As with the electrical stimuli, model mitral responses to odor were also strikingly similar to those of real mitral cells. As an initial test of how different circuit components contribute to the responses, the lateral interactions between mitral cells and bulbar interneurons were manipulated. Tests with reduced lateral interactions and other tests with no inhibitory synaptic connections both produced mitral cell outputs that were uncharacteristic of salamander recordings. The similarity of the model's output to the complex properties of salamander single-cell recordings suggests that several critical features of the bulb circuit responsible for shaping mitral cell responsivity have been captured.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]