These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The inhibitory effects of cromakalim and its active enantiomer BRL 38227 against various agonists in guinea pig and human airways: comparison with pinacidil and verapamil.
    Author: Taylor SG, Arch JR, Bond J, Buckle DR, Shaw DJ, Taylor JF, Ward JS.
    Journal: J Pharmacol Exp Ther; 1992 May; 261(2):429-37. PubMed ID: 1578358.
    Abstract:
    The effects of the potassium channel activators, cromakalim, BRL 38227 and pinacidil, and the calcium antagonist, verapamil, have been compared against various spasmogens on airway responses in vitro and in vivo in the guinea pig and also in human isolated bronchi. In guinea pig tracheal spirals, potassium channel activators generally had a greater inhibitory effect than verapamil against tone induced by a wide range of spasmogens (spontaneous, 5-hydroxytryptamine, leukotriene D4, prostaglandin E2). The potassium channel activators had very little effect against potassium chloride- and carbachol-induced tone in guinea pig tracheal spirals [e.g., cromakalim (20 microM) induced relaxations of 0.21 +/- 0.03 (relative to an isoprenaline maximum = 1.0, mean +/- S.E.M.) against carbachol, compared to 0.77 +/- 0.03 against histamine]. In vivo, the potassium channel activators prevented histamine and 5-hydroxytryptamine-induced bronchoconstrictions, but had little inhibitory effect against acetylcholine. In contrast, in human bronchi, cromakalim was capable of inducing powerful concentration-dependent relaxations against carbachol-induced tone [cromakalim (20 microM) induced relaxations of 0.77 +/- 0.09 (relative to isoprenaline = 1.0, mean +/- S.E.M.) against carbachol, compared to 0.95 +/- 0.04 against histamine]. In human bronchi, all the inhibitory agents were more potent and more effective, except that verapamil did not have an increased maximum response. We conclude that potassium channel activators should be effective at relaxing contractions induced by a wide range of spasmogens in man.
    [Abstract] [Full Text] [Related] [New Search]