These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of antenatal glucocorticoids on circulatory adaptation at birth in the ovine fetus. Author: Houfflin-Debarge V, Deruelle P, Jaillard S, Magnenant E, Riou Y, Devisme L, Puech F, Storme L. Journal: Biol Neonate; 2005; 88(2):73-8. PubMed ID: 15785018. Abstract: OBJECTIVE: Adaptation to extra-uterine life requires dramatic increase in pulmonary blood flow. Mechanisms that induce pulmonary vasodilatation at birth are incompletely understood but include alveolar ventilation, increase in PaO2, and production of vasoactive mediators. We hypothesized that antenatal glucocorticoids (GC) increase pulmonary vasodilatation to birth-related stimuli. STUDY DESIGN: To test this hypothesis, we studied the pulmonary hemodynamic response at birth to mechanical ventilation with low (<10%) and then with high (100%) FiO2 in chronically prepared late-gestation fetal lambs treated or not by antenatal maternal steroids. RESULTS: Basal mean aortic and pulmonary artery pressure (PAP), left pulmonary blood flow, pulmonary vascular resistance (PVR), and blood gas were similar between control and dexamethasone-treated animals (GC group). During mechanical ventilation with low FiO2, mean PVR decreased by 40% in the control group (from 0.44 +/- 0.01 to 0.25 +/- 0.01 mm Hg/ml/min) and by 60% in the GC group (from 0.44 +/- 0.02 to 0.19 +/- 0.02 mm Hg/ml/min) (p < 0.01). When subsequently ventilated with 100% O2, there was no difference in PVR decrease between groups (0.15 +/- 0.02 mm Hg/ml/min in the GC group vs. 0.14 +/- 0.01 mm Hg/ml/min in the control group). CONCLUSION: Antenatal GC enhance pulmonary vasodilatation induced by alveolar ventilation at birth but do not alter the pulmonary vascular response to O2. We speculate that antenatal steroids exposure improve adaptation at birth through acceleration of both parenchymal and vascular lung maturation.[Abstract] [Full Text] [Related] [New Search]