These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Response of Harshaw neutron thermoluminescence dosemeters in terms of the revised ICRP/ICRU recommendations.
    Author: Veinot KG, Hertel NE.
    Journal: Radiat Prot Dosimetry; 2005; 113(4):442-8. PubMed ID: 15788417.
    Abstract:
    To monitor workers for external neutron radiation dose, the Y-12 National Security Complex utilises the thermoluminescence dosemeters (TLDs) manufactured by Harshaw. At Y-12, the majority of external dose to workers is due to low-energy photon and/or beta particles emitted from uranium and its progeny. However, some neutron dose is expected since neutrons are produced from (alpha,n) reactions in various compounds found at the plant, including UF4 and UF6. Neutron sources, such as 252Cf, are also used throughout the complex. The Harshaw neutron dosemeter consists of two gamma-sensitive elements (7Li) and two neutron-sensitive elements enriched in 6Li with various shielding/filter materials placed around each of them. In this work, the energy response of the dosemeter to neutrons has been calculated using the Monte Carlo transport code MCNP Version 4-C and, these results are compared with the measured response of the dosemeter to unmoderated and D2O-moderated 252Cf neutrons. The response of the dosemeter has also been determined in terms of the personal absorbed dose and personal dose equivalent as a function of neutron energy based on the recommendations of the ICRP Publication 60 and ICRU Report 49. The energy response of the dosemeter characteristics can be used to generate spectral conversion coefficients for routine neutron absorbed dose and dose equivalent calculations.
    [Abstract] [Full Text] [Related] [New Search]