These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Author: Nutt CL, Betensky RA, Brower MA, Batchelor TT, Louis DN, Stemmer-Rachamimov AO. Journal: Clin Cancer Res; 2005 Mar 15; 11(6):2258-64. PubMed ID: 15788675. Abstract: PURPOSE AND EXPERIMENTAL DESIGN: In modern neuro-oncology, no variable affects therapeutic decisions and prognostic estimation more than tumor classification. We showed recently that class prediction models, based on gene expression profiles, classify diagnostically challenging malignant gliomas in a manner that better correlates with clinical outcome than standard pathology. In the present study, we used immunohistochemistry to investigate YKL-40 protein expression in independent sets of glioblastomas and anaplastic oligodendrogliomas to determine whether this single marker can aid classification of these high-grade gliomas. RESULTS AND CONCLUSIONS: Glioblastomas show strikingly more YKL-40 expression than anaplastic oligodendrogliomas. Only 2 of 37 glioblastomas showed completely negative YKL-40 staining in both tumor cells and extracellular matrix, whereas 18 of 29 anaplastic oligodendrogliomas were completely negative in non-microgemistocytic tumor cells and extracellular matrix. Tumor cell staining intensity was also markedly different: 84% of glioblastomas showed strong staining intensities of 2+ or 3+ whereas 76% of anaplastic oligodendrogliomas either did not stain or stained at only 1+. YKL-40 staining provided a better class distinction of glioblastoma versus anaplastic oligodendroglioma than glial fibrillary acidic protein, the current standard immunohistochemical marker used to distinguish diagnostically challenging gliomas. Moreover, a combination of YKL-40 and glial fibrillary acidic protein immunohistochemistry afforded even greater diagnostic accuracy in anaplastic oligodendrogliomas.[Abstract] [Full Text] [Related] [New Search]