These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 4-Hydroxytamoxifen inhibits proliferation of multiple myeloma cells in vitro through down-regulation of c-Myc, up-regulation of p27Kip1, and modulation of Bcl-2 family members.
    Author: Gauduchon J, Gouilleux F, Maillard S, Marsaud V, Renoir JM, Sola B.
    Journal: Clin Cancer Res; 2005 Mar 15; 11(6):2345-54. PubMed ID: 15788686.
    Abstract:
    PURPOSE: Multiple myeloma is an incurable B-cell malignancy requiring new therapeutic strategies. Our approach was to analyze the in vitro effects of a selective estrogen receptor modulator, 4-hydroxytamoxifen (4-OHT), on six multiple myeloma cell lines. EXPERIMENTAL DESIGN: Cultured multiple myeloma cells were treated with various 4-OHT concentrations and the cellular response was studied: cell proliferation, cell viability, induction of apoptosis, caspase activities, and expression of signaling proteins. RESULTS: We found that pharmacologic concentrations of 4-OHT inhibit cell proliferation (4 of 6 cell lines). This inhibition is achieved by two independent events: a block at the G(1) phase of the cell cycle and the induction of apoptotic death. The cellular response to 4-OHT depends on the presence of functional estrogen receptors. 4-OHT treatment activates an intrinsic mitochondrial caspase-9-dependent pathway but not the Fas/FasL death pathway. Signaling pathways known to be involved in the survival and/or proliferation of multiple myeloma cells are not affected by 4-OHT treatment. 4-OHT-induced G(1) arrest is accompanied by the up-regulation of the cell cycle inhibitor p27(Kip1) and the down-regulation of c-Myc. Among the Bcl-2 family members tested, the proapoptotic BimS protein is induced whereas the antiapoptotic protein Mcl-1 is decreased. CONCLUSIONS: Although the effects of 4-OHT are observed at micromolar concentrations, cellular mechanisms responsible for G(1) arrest, as well as apoptosis induction, are similar to those observed in breast cancer cells. Our data support the concept that 4-OHT may represent an alternative approach to inhibit proliferation and induce apoptosis of multiple myeloma cells.
    [Abstract] [Full Text] [Related] [New Search]