These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson's disease.
    Author: Zheng JS, Tang LL, Zheng SS, Zhan RY, Zhou YQ, Goudreau J, Kaufman D, Chen AF.
    Journal: Brain Res Mol Brain Res; 2005 Mar 24; 134(1):155-61. PubMed ID: 15790539.
    Abstract:
    Gene transfer of glial cell line-derived neurotrophic factor (GDNF) in rodent models of Parkinson's disease (PD) has been shown to protect against neurodegeneration either prior to or immediately after neurotoxin-induced lesions; however, the nigrostriatal pathway was largely intact when gene delivery was completed in these models, which may not accurately reflect the clinical situation encountered with Parkinson's patients. In this study, replication-incompetent adenoviral vectors encoding the rat GDNF gene were administered into the striatum 4 weeks following 6-hydroxydopamine (6-OHDA) injection in the unilateral striatum, more closely resembling fully developed PD. Apomorphine-induced rotational behavior testing was performed every week following 6-OHDA injection. At the 10th week after gene transfer, the striatal dopamine concentrations were measured by HPLC with an electrochemical detector and the number of tyrosine hydroxylase (TH)-positive dopamine neurons in the substantia nigra (SN) was determined by immunohistochemistry. Injection of 6-OHDA into the striatum produced stable increases in rotation, which reached a plateau between 4 and 5 weeks post-injection. The number of TH-positive neuron in the SN and dopamine levels in the striatum was significantly lower in the 6-OHDA group compared to the normal group. Gene transfer of GDNF, but not beta-galactosidase, significantly increased the number of TH-positive neurons and dopamine levels, with a subsequent behavioral recovery between 5 and 10 weeks following GDNF transduction. These findings demonstrate that adenovirus-mediated gene transfer of GDNF is efficacious even in the late stages of 6-OHDA-induced PD rats. They also provide further evidence on the effectiveness of GDNF-based gene therapy for experimental Parkinson's disease.
    [Abstract] [Full Text] [Related] [New Search]