These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of the human atrial myosin light chain 1 promoter by Ca2+-calmodulin-dependent signaling pathways. Author: Woischwill C, Karczewski P, Bartsch H, Luther HP, Kott M, Haase H, Morano I. Journal: FASEB J; 2005 Apr; 19(6):503-11. PubMed ID: 15791000. Abstract: We investigated expression regulation of the human atrial myosin light chain 1 (hALC-1) gene using a cardiomyocyte H9c2 cell line stably transfected with a construct consisting of the human ALC-1 promoter cloned in front of the luciferase gene (H9c2T1). H9c2T1 cells were stimulated with vasopressin, which is known to induce cardiomyocyte hypertrophy and to activate a panel of signaling pathways. Those pathways involved in hALC-1 promoter activity regulation were dissected by using pharmacological inhibitor substances. Stimulation with vasopressin was associated with nuclear NFAT translocation and significantly increased human ALC-1 promoter activity. Inhibition of calcineurin by cyclosporin A blocked the effects of vasopressin on ALC-1 promoter activity to approximately 50%. This suggests that the Ca2+-calmodulin-calcineurin-NFAT pathway is involved in human ALC-1 promoter activation. However, inhibition of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) by KN-93 decreased human ALC-1 promoter activity to almost basal levels. CaMK regulation of ALC-1 promoter activity effect could well be mediated by CaMKIV, which accumulated in the nucleus upon vasopressin stimulation. Inhibition of protein kinase C (PKC) isoforms by bisindolylmaleimide had no significant influence on human ALC-1 promoter activity. Thus, our results demonstrate a dominant role of Ca2+-calmodulin-dependent signaling pathways in the regulation of human ALC-1 expression.[Abstract] [Full Text] [Related] [New Search]