These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rosiglitazone restores renal D1A receptor-Gs protein coupling by reducing receptor hyperphosphorylation in obese rats.
    Author: Trivedi M, Lokhandwala MF.
    Journal: Am J Physiol Renal Physiol; 2005 Aug; 289(2):F298-304. PubMed ID: 15798088.
    Abstract:
    Dopamine D(1A) receptor function is impaired in obesity-induced insulin resistance, contributing to sodium retention. We showed previously that uncoupling of D(1A) receptors from G proteins is responsible for diminished natriuretic response to dopamine in obese Zucker rats (OZRs). We hypothesized that overexpression of G protein-coupled receptor kinases (GRKs) leads to increased phosphorylation of D(1A) receptors, which in turn causes uncoupling of the receptors from G(s) proteins in proximal tubules of OZRs. We also examined effects of an insulin sensitizer, rosiglitazone, in correcting these defects. We found that basal and agonist (fenoldopam)-induced coupling of D(1A) receptors to G(s) proteins was impaired in proximal tubules of OZRs compared with lean Zucker rats (LZRs). Moreover, basal serine phosphorylation of D(1A) receptors was elevated two- to threefold in proximal tubules of OZRs compared with LZRs. Fenoldopam increased D(1A) receptor phosphorylation in proximal tubules of LZRs but not OZRs. Compared with that in LZRs, GRK4 expression in OZRs was elevated 200-300% in proximal tubule cell lysates and GRK2 expression was approximately 30% higher in plasma membranes isolated from proximal tubules of OZRs. Rosiglitazone treatment restored basal and agonist-induced coupling of D(1A) receptors to G(s) proteins and reduced basal serine phosphorylation of D(1A) receptors, GRK4 expression, and translocation of GRK2 to the plasma membrane in proximal tubules of OZRs. Furthermore, rosiglitazone significantly reduced fasting blood glucose and plasma insulin in OZRs. Collectively, these results suggest that insulin resistance is responsible for GRK4 overexpression and GRK2 translocation leading to hyperphosphorylation of D(1A) receptors and their uncoupling from G(s) proteins as rosiglitazone treatment corrects these defects in OZRs.
    [Abstract] [Full Text] [Related] [New Search]