These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by DL-alpha-lipoic acid. Author: Shila S, Subathra M, Devi MA, Panneerselvam C. Journal: Arch Toxicol; 2005 Mar; 79(3):140-6. PubMed ID: 15798887. Abstract: The purpose of this study was to examine the effects of DL: -alpha-lipoic acid (LA) on arsenic (As) induced alteration of glutathione (GSH) level and of the activity of glutathione-related enzymes-glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH)-in rat brain regions (cortex, hypothalamus, striatum, cerebellum and hippocampus). Male Wistar rats of 150+/-10 g weight were divided into four groups: control and three experimental groups supplemented with arsenic (sodium arsenite) alone (100 ppm mixed in drinking water), lipoic acid alone (70 mg kg(-1) body weight), arsenic plus lipoic acid (100 ppm arsenic in drinking water plus 70 mg lipoic acid kg(-1) body weight). The arsenic content of brain regions was found to increase with the administration of sodium arsenite. Arsenic exposure elicited a significant decline in glutathione content and in the activity of related enzymes, with the greatest decreases seen in the cortex, striatum, and hippocampus, whereas there were no significant differences between control rats and the group treated with lipoic acid alone. Highly elevated content of the thiobarbituric acid-reactive substance malondialdehyde (MDA) in the brain regions of arsenic-exposed rats reflected extensive lipid peroxidation (LPO) processes. Simultaneous lipoic acid treatment was effective in reducing brain regional arsenic levels and lipid peroxidation and in increasing the glutathione content and the activity of its related enzymes. Lipoic acid, by acting as an alternative sulfhydryl nucleophile to glutathione, prevents its oxidation to glutathione disulfide in detoxifying reactions against reactive oxygen species and consequently increases the activity of glutathione-related enzymes.[Abstract] [Full Text] [Related] [New Search]