These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. Author: Gissot L, Polge C, Bouly JP, Lemaitre T, Kreis M, Thomas M. Journal: Plant Mol Biol; 2004 Nov; 56(5):747-59. PubMed ID: 15803412. Abstract: The SNF1/AMPK/SnRK1 heterotrimeric kinase complex is involved in the adaptation of cellular metabolism in response to diverse stresses in yeast, mammals and plants. Following a model proposed in yeast, the kinase targets are likely to bind the complex via the non-catalytic beta-subunits. These proteins currently identified in yeast, mammals and plants present a common structure with two conserved interacting domains named Kinase Interacting Sequence (KIS) and Association with SNF1 Complex (ASC), and a highly variable N-terminal domain. In this paper we describe the characterisation of AKINbeta3, a novel protein related to AKINbeta subunits of Arabidopsis thaliana, containing a truncated KIS domain and no N-terminal extension. Interestingly the missing region of the KIS domain corresponds to the glycogen-binding domain (beta-GBD) identified in the mammalian AMPKbeta1. In spite of its unusual features, AKINbeta3 complements the yeast sip1Deltasip2Deltagal83Delta mutant. Moreover, interactions between AKINbeta3 and other AKIN complex subunits from A. thaliana were detected by two-hybrid experiments and in vitro binding assays. Taken together these data demonstrate that AKINbeta3 is a beta-type subunit. A search for beta-type subunits revealed the existence of beta3-type proteins in other plant species. Furthermore, we suggest that the AKINbeta3-type subunits could be plant specific since no related sequences have been found in any of the other completely sequenced genomes. These data suggest the existence of novel SnRK1 complexes including AKINbeta3-type subunits, involved in several functions among which some could be plant specific.[Abstract] [Full Text] [Related] [New Search]