These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of plutonium-239 + plutonium-240 and plutonium-241 in environmental samples using low-level liquid scintillation spectrometry. Author: Yu YF, Bjørnstad HE, Salbu B. Journal: Analyst; 1992 Mar; 117(3):439-42. PubMed ID: 1580376. Abstract: A radiochemical method for the simultaneous determination of 239Pu + 240Pu and 241Pu in environmental samples has been developed. In the course of the analysis a 236Pu tracer was used for estimating the chemical yield of plutonium isotopes. After suitable pre-treatment of the sample, the plutonium nuclides in solution were coprecipitated with iron(III) hydroxide and calcium oxalate and isolated further from impurities and interfering radionuclides by means of anion-exchange chromatography. Plutonium isotopes in the eluate (NH4I-HCI) were converted into nitrate form and then extracted with 20 ml of 5% bis(2-ethylhexyl) hydrogen phosphate extractive cocktail. The final organic solution was measured spectrometrically using an ultra-low-level liquid scintillation spectrometer, Quantulus (LKB, 1220 Wallac). The chemical yields of plutonium range from 25 to 50% for 100 I of sea-water and 30 to 60% for 40 g of dried soil sample. The counting efficiencies are nearly 100% for 239Pu + 240Pu and 48.8% for 241Pu, respectively. The detection limits were estimated to be 0.20 mBq for 239Pu + 240Pu and 2.2 mBq for 241Pu, respectively. The proposed procedure has been tested for the simultaneous determination of 239Pu + 240Pu and 241Pu in sea-water (Irish Sea, North Sea) and soils (Cumbrian coast, UK; Byelorussia, USSR).[Abstract] [Full Text] [Related] [New Search]