These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrergic innervation of trigeminal and hypoglossal motoneurons in the cat.
    Author: Pose I, Fung S, Sampogna S, Chase MH, Morales FR.
    Journal: Brain Res; 2005 Apr 11; 1041(1):29-37. PubMed ID: 15804497.
    Abstract:
    The present study was undertaken to determine the location of trigeminal and hypoglossal premotor neurons that express neuronal nitric oxide synthase (nNOS) in the cat. Cholera toxin subunit b (CTb) was injected into the trigeminal (mV) or the hypoglossal (mXII) motor nuclei in order to label the corresponding premotor neurons. CTb immunocytochemistry was combined with NADPH-d histochemistry or nNOS immunocytochemistry to identify premotor nitrergic (NADPH-d(+)/CTb(+) or nNOS(+)/ CTb(+) double-labeled) neurons. Premotor trigeminal as well as premotor hypoglossal neurons were located in the ventro-medial medullary reticular formation in a region corresponding to the nucleus magnocellularis (Mc) and the ventral aspect of the nucleus reticularis gigantocellularis (NRGc). Following the injection of CTb into the mV, this region was found to contain a total of 60 +/- 15 double-labeled neurons on the ipsilateral side and 33 +/- 14 on the contralateral side. CTb injections into the mXII resulted in 40 +/- 17 double-labeled neurons in this region on the ipsilateral side and 16 +/- 5 on the contralateral side. Thus, we conclude that premotor trigeminal and premotor hypoglossal nitrergic cells coexist in the same medullary region. They are colocalized with a larger population of nitrergic cells (7200 +/- 23). Premotor neurons in other locations did not express nNOS. The present data demonstrate that a population of neurons within the Mc and the NRGc are the source of the nitrergic innervation of trigeminal and hypoglossal motoneurons. Based on the characteristics of nitric oxide actions and its diffusibility, we postulate that these neurons may serve to synchronize the activity of mV and mXII motoneurons.
    [Abstract] [Full Text] [Related] [New Search]