These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiologic effects of electrical stimulation leg cycle exercise training in spinal cord injured persons. Author: Hooker SP, Figoni SF, Rodgers MM, Glaser RM, Mathews T, Suryaprasad AG, Gupta SC. Journal: Arch Phys Med Rehabil; 1992 May; 73(5):470-6. PubMed ID: 1580776. Abstract: The purpose of this study was to assess the physiologic training effects of functional electrical stimulation leg cycle ergometer (FES-LCE) exercise in persons with spinal cord injury (SCI) who were previously untrained in this activity. Ten persons with quadriplegia (C5 to C7) and eight with paraplegia (T4 to T11) performed FES-LCE training on an ERGYS I ergometer 10 to 30 minutes per day, 2 or 3 days per week for 12 to 16 weeks (36 total sessions). Training session power output (PO) ranged from 0.0W (no external resistance) to 30.6W. Each subject completed discontinuous graded FES-LCE and arm crank ergometer (ACE) tests before and after training for determinations of peak lower and upper extremity metabolic, pulmonary, and hemodynamic responses. Compared with pretraining, this SCI group exhibited significantly (p less than or equal to .05) higher posttraining peak PO (+45%), oxygen uptake ([O2], + 23%), pulmonary ventilation (+27%), heart rate (+11%), cardiac output ([Qt], + 13%) and significantly lower total peripheral resistance ([TPR], - 14%) during FES-LCE posttests. There were no significant changes in peak stroke volume (+6%), mean arterial pressure ([MAP], - 5%), or arteriovenous oxygen difference ([a-vO2diff], + 10%) during posttraining FES-LCE tests. In addition, no significant differences were noted for the peak level of any monitored variable during ACE posttests after FES-LCE training. The rise in total vascular conductance, implied by the significant decrease in posttraining TPR during FES-LCE tests, denotes that a peripheral circulatory adaptation developed in the persons with SCI during FES-LCE exercise training.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]