These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Paradoxal effect of salbutamol in an in vitro model of bronchoprotection.
    Author: Girodet PO, Berger P, Martinez B, Marthan R, Advenier C, Molimard M.
    Journal: Fundam Clin Pharmacol; 2005 Apr; 19(2):179-86. PubMed ID: 15810898.
    Abstract:
    Salbutamol-induced hyperresponsiveness to acetylcholine was investigated in human and guinea-pig isolated airways and cultured human airway smooth muscle cells. Salbutamol (10(-7)-10(-5) m) inhibited contractions induced by low concentrations of acetylcholine (10(-8)-10(-7) m) but potentiated contractions induced by higher concentrations of acetylcholine (10(-5)-10(-3) m). Pretreatment with the calcium channel antagonist nicardipine suppressed salbutamol-induced hyperresponse. Stimulation of cultured human airway smooth muscle cells with salbutamol (10(-6) m) amplified intracellular calcium concentration rise induced by acetylcholine (10(-5) m). Propranolol (10(-7) m), a beta1- and beta2-adrenoceptor antagonist, and ICI 118551 (10(-7)-10(-6) m), a beta2-adrenoceptor antagonist, suppressed the inhibitory effect of salbutamol but did not inhibit the hyperresponse on high concentrations of acetylcholine. In contrast, higher concentration of propranolol (10(-6) m) inhibited salbutamol-induced hyperreactivity. Effects of salbutamol were not affected by atenolol, a beta1-adrenoceptor blocker. Salbutamol-induced hyperresponsiveness is mediated through a mechanism involving calcium channel activation.
    [Abstract] [Full Text] [Related] [New Search]