These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantitative spatial analysis of the distribution of NADPH-diaphorase-positive neurons in the developing and mature rat retina. Author: Palanza L, Jhaveri S, Donati S, Nuzzi R, Vercelli A. Journal: Brain Res Bull; 2005 Apr 30; 65(4):349-60. PubMed ID: 15811601. Abstract: NADPH-diaphorase (NADPH-d) histochemistry labels a subpopulation of nitric oxide-synthesizing amacrine cells in the inner nuclear layer of the rat retina. We have studied their morphology and distribution in postnatal and adult rats in whole-mounted retinae. NAPDH-d-positive neurons are detected as early as postnatal day (P)5, especially in the peripheral retina; intense labeling of somata and long lengths of dendrites is obtained between P10 and P18, after which only the somata exhibit NADPH-d activity. The density and number of these cells increase progressively from P7 to P14, with a significantly higher density in the central retina as compared to the periphery. The sociology of these cells was analyzed quantitatively studying the Voronoi domains: a polygon area can be drawn that delineates the territory of the map that is closer to the cell than to any other cell of the map. In addition, we calculated the conformity ratio of Cook, i.e., the mean nearest neighbor distance/standard deviation of all the nearest neighbor distances, in order to reveal whether or not these cells are regularly distributed through the retina. We find that the distribution of the NADPH-d-positive cells tends to be regular throughout the retina: the local coefficient of variation (obtained by comparing the size of each Voronoi polygon area to those of its neighbors) tends to regularity at P14 and remains unaltered through maturity. Therefore, as other cell types, NADPH-d-positive amacrine cells are almost regularly distributed from the time of eye opening and nitric oxide may play a role in the development of retinal circuitry and in the regulation of retinal blood flow.[Abstract] [Full Text] [Related] [New Search]