These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Author: van der Maas P, van den Bosch P, Klapwijk B, Lens P. Journal: Biotechnol Bioeng; 2005 May 20; 90(4):433-41. PubMed ID: 15812803. Abstract: An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic conditions (55 degrees C). This study demonstrates the technical feasibility of this BioDeNO(x) concept in a bench-scale installation with a continuous flue gas flow of 650 l.h(-1) (70-500 ppm NO; 0.8-3.3% O(2)). Stable NO removal with an efficiency of at least 70% was obtained in case the artificial flue gas contained 300 ppm NO and 1% O(2) when the bioreactor was inoculated with a denitrifying sludge. An increase of the O(2) concentration of only 0.3% resulted in a rapid elevation of the redox potential (ORP) in the bioreactor, accompanied by a drastic decline of the NO removal efficiency. This was not due to a limitation or inhibition of the NO reduction, but to a limited biological iron reduction capacity. The latter leads to a depletion of the NO absorption capacity of the scrubber liquor, and thus to a poor NO removal efficiency. Bio-augmentation of the reactor mixed liquor with an anaerobic granular sludge with a high Fe(III) reduction capacity successfully improved the bioreactor efficiency and enabled to treat a flue gas containing at least 3.3% O(2) and 500 ppm NO with an NO removal efficiency of over 80%. The ORP in the bioreactor was found to be a proper parameter for the control of the ethanol supply, needed as electron donor for the biological regeneration process. The NO removal efficiency as well as the Fe(III)EDTA(-) reduction rate were found to decline at ORP values higher than -140 mV (pH 7.0). For stable BioDeNO(x) operation, the supply of electron donor (ethanol) can be used to control the ORP below that critical value.[Abstract] [Full Text] [Related] [New Search]