These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of prostaglandin transporter in the bovine uterus and fetal membranes during pregnancy. Author: Banu SK, Arosh JA, Chapdelaine P, Fortier MA. Journal: Biol Reprod; 2005 Aug; 73(2):230-6. PubMed ID: 15814899. Abstract: Uteroplacental prostaglandins (PGs) play pivotal roles in the maintenance and termination of pregnancy in mammals. In the present study, we have characterized the expression of prostaglandin transporter (PGT) in placentome caruncles, intercaruncular tissues, fetal membranes, and utero-ovarian plexus during pregnancy in cattle. Pregnant bovine uteri were collected and classified into six groups covering the entire gestational length. In caruncles and intercaruncular tissues, PGT mRNA (also known as SLC02A1) and PGT protein were highly expressed at the late stage of pregnancy compared to the early and mid stages, whereas the level of expression is constant and low in fetal membranes throughout pregnancy. PGT mRNA and PGT protein were expressed at a constant level in the utero-ovarian plexus both ipsilateral and contralateral to corpus luteum throughout the course of pregnancy. Overall, the relative expression of PGT mRNA and PGT protein were higher in caruncles than in intercaruncular tissue and fetal membranes, whereas no differences were detected between intercaruncular tissues and fetal membranes at any stage of gestation. Immunohistochemistry indicated that PGT was preferentially expressed in caruncular epithelial cells of placentomes and endometrial luminal epithelial and myometrial smooth muscle cells of the intercaruncular regions. The level of PGT expression was comparatively higher in maternal components than in fetal components. In conclusion, differential spatiotemporal tissue-specific expression of PGT in uterine and intrauterine tissues suggests a role for this transporter in the exchange of PGs between the maternal and the fetal compartments, as well as for intrauterine metabolism of PGs during pregnancy.[Abstract] [Full Text] [Related] [New Search]