These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA. Author: Birgisdottir AB, Johansen S. Journal: Nucleic Acids Res; 2005; 33(6):2042-51. PubMed ID: 15817568. Abstract: The wide, but scattered distribution of group I introns in nature is a result of two processes; the vertical inheritance of introns with or without losses, and the occasional transfer of introns across species barriers. Reversal of the group I intron self-splicing reaction, termed reverse splicing, coupled with reverse transcription and genomic integration potentially mediate an RNA-based intron mobility pathway. Compared to the well characterized endonuclease-mediated intron homing, reverse splicing is less specific and represents a likely explanation for many intron transpositions into new genomic sites. However, the frequency and general role of an RNA-based mobility pathway in the spread of natural group I introns is still unclear. We have used the twin-ribozyme intron (Dir.S956-1) from the myxomycete Didymium iridis to test how a mobile group I intron containing a homing endonuclease gene (HEG) selects between potential insertion sites in the small subunit (SSU) rRNA in vitro, in Escherichia coli and in yeast. Surprisingly, the results show a site-specific RNA-based targeting of Dir.S956-1 into its natural (S956) SSU rRNA site. Our results suggest that reverse splicing, in addition to the established endonuclease-mediated homing mechanism, potentially accounts for group I intron spread into the homologous sites of different strains and species.[Abstract] [Full Text] [Related] [New Search]