These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Author: Woolley SM, Casseday JH. Journal: J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647. Abstract: The avian auditory midbrain nucleus, the mesencephalicus lateralis, dorsalis (MLd), is the first auditory processing stage in which multiple parallel inputs converge, and it provides the input to the auditory thalamus. We studied the responses of single MLd neurons to four types of modulated sounds: 1) white noise; 2) band-limited noise; 3) frequency modulated (FM) sweeps, and 4) sinusoidally amplitude-modulated tones (SAM) in adult male zebra finches. Responses were compared with the responses of the same neurons to pure tones in terms of temporal response patterns, thresholds, characteristic frequencies, frequency tuning bandwidths, tuning sharpness, and spike rate/intensity relationships. Most neurons responded well to noise. More than one-half of the neurons responded selectively to particular portions of the noise, suggesting that, unlike forebrain neurons, many MLd neurons can encode specific acoustic components of highly modulated sounds such as noise. Selectivity for FM sweep direction was found in only 13% of cells that responded to sweeps. Those cells also showed asymmetric tuning curves, suggesting that asymmetric inhibition plays a role in FM directional selectivity. Responses to SAM showed that MLd neurons code temporal modulation rates using both spike rate and synchronization. Nearly all cells showed low-pass or band-pass filtering properties for SAM. Best modulation frequencies matched the temporal modulations in zebra finch song. Results suggest that auditory midbrain neurons are well suited for encoding a wide range of complex sounds with a high degree of temporal accuracy rather than selectively responding to only some sounds.[Abstract] [Full Text] [Related] [New Search]