These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Author: Jin F, Zhou Z, Moriya T, Kishida H, Higashijima H, Enomoto H. Journal: Environ Sci Technol; 2005 Mar 15; 39(6):1893-902. PubMed ID: 15819253. Abstract: A two-step hydrothermal process to improve the production of acetic acid was discussed. The first step was to accelerate the formation of 5-hydroxymethyl-2-furaldehyde (HMF), 2-furaldehyde (2-FA), and lactic acid (LA), and the second step was to further convert the furans (HMF, 2-FA) and LA produced in the first step to acetic acid by oxidation with newly supplied oxygen. The acetic acid obtained by the two-step process had not only a high yield but also better purity. The contribution of two pathways via furans and LA in the two-step process to convert carbohydrates into acetic acid was roughly estimated as 85-90%, and the ratio of the contributions of furans and LA to yield acetic acid was estimated as 2:1. The fact that WO of carbohydrates is not capable of producing a large amount of acetic acid, while the two-step process can enhance the acetic acid yield, can be explained because formic acid is a basic product of direct oxidation of carbohydrate, and acetic acid in WO of carbohydrates may come from the oxidation of dehydration products of aldose.[Abstract] [Full Text] [Related] [New Search]