These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Author: Vaes BL, Dechering KJ, van Someren EP, Hendriks JM, van de Ven CJ, Feijen A, Mummery CL, Reinders MJ, Olijve W, van Zoelen EJ, Steegenga WT. Journal: Bone; 2005 May; 36(5):803-11. PubMed ID: 15820155. Abstract: Wnt signaling has been implicated in regulating bone formation by controlling osteoblast proliferation and function. Although stabilization of beta-catenin by Wnt has been shown to increase alkaline phosphatase expression and osteoblast differentiation, the precise role of Wnt signaling during the process of osteoblast differentiation is largely unknown. In this study, we used microarray technology to investigate expression regulation of Wnt signaling components during in vitro osteoblast differentiation. Expression was analyzed during bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation of murine C2C12 and MC3T3 cells and data were compared with expression in BMP2-treated NIH3T3 fibroblasts. During osteoblast differentiation, particularly strong expression regulation of the Wnt antagonists Sfrp2 (secreted frizzled related protein 2) and Wif1 (Wnt inhibitory factor 1) was observed in the late phase of differentiation. In situ expression analysis in murine tail vertebrae supported Wif1 expression during late phase bone cell differentiation, since Wif1 was found to be expressed in vivo in trabecular, but not in cortical bone. We further analyzed the effects of continuous activation of Wnt signaling by lithium chloride and observed that osteoblast differentiation was reduced, as measured by expression of osteoblast marker genes encoding alkaline phosphatase, osteocalcin, and osterix, as well as by the amount of calcium release. Taken together, our data indicate that endogenous expression of Wnt antagonists by osteoblasts provides a negative Wnt feedback loop which is essential in controlling osteoblast maturation.[Abstract] [Full Text] [Related] [New Search]