These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Author: Shi H, Timmins G, Monske M, Burdick A, Kalyanaraman B, Liu Y, Clément JL, Burchiel S, Liu KJ. Journal: Arch Biochem Biophys; 2005 May 01; 437(1):59-68. PubMed ID: 15820217. Abstract: Electron paramagnetic resonance with spin trapping is a useful technique to detect reactive oxygen species, such as superoxide radical anion (O2*-), a key species in many biological processes. We evaluated the abilities of four spin traps in trapping cell-generated O2*-: 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO), 2-diethoxyphosphoryl-2-phenethyl-3,4-dihydro-2H-pyrrole N-oxide (DEPPEPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Optimal experimental conditions for obtaining maximal signal intensity of O2*- adduct in a cellular system were first studied. The maximal intensities of BMPO, DEPMPO, and DMPO adducts were similar while DEPPEPO did not trap cell-generated O2*- induced by 1,6-benzo[a]pyrene quinone in a human mammary epithelial cell line (MCF-10A). BMPO and DEPMPO adducts were more stable, considering the stability of their maximal signal, than DMPO adduct in the tested cellular systems. In addition, we observed that O2*- spin adducts were reduced to their corresponding hydroxyl adducts in the cellular system. The selection of optimal spin trap in trapping cell-generated O2*- is discussed.[Abstract] [Full Text] [Related] [New Search]