These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy.
    Author: Burnashev N, Rozov A.
    Journal: Cell Calcium; 2005 May; 37(5):489-95. PubMed ID: 15820398.
    Abstract:
    In synapses neurotransmitter release is triggered by elevation of Ca2+ concentration at a Ca2+ sensor of the release machinery. The Ca2+ concentration at the release site at the given time point is determined by Ca2+ dynamics within presynaptic terminal. It depends on a source of Ca2+ (usually voltage-gated Ca2+ channels), diffusional distance between the source of Ca2+ and the Ca2+ sensor and Ca2+ buffering by endogenous Ca2+ buffers. In many synapses transmitter release can be enhanced (facilitated) during repetitive activity of neurons. The main source of facilitation is activity-dependent increase of Ca2+ concentration at the release site. Several mechanisms of facilitation have been proposed, namely, accumulation of residual Ca2+, multi-site (X receptor) mechanism and partial Ca2+ buffer saturation mechanism. In this review we discuss theoretical and experimental evidence in favor of one or the other of proposed mechanisms.
    [Abstract] [Full Text] [Related] [New Search]