These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles.
    Author: Miller KE, DeProto J, Kaufmann N, Patel BN, Duckworth A, Van Vactor D.
    Journal: Curr Biol; 2005 Apr 12; 15(7):684-9. PubMed ID: 15823543.
    Abstract:
    Axonal transport is required for the elaboration and maintenance of synaptic morphology and function. Liprin-alphas are scaffolding proteins important for synapse structure and electrophysiology. A reported interaction with Kinesin-3 (Kif1a) suggested Liprin-alpha may also be involved in axonal transport. Here, at the light and ultrastructural levels, we discover aberrant accumulations of synaptic vesicle markers (Synaptotagmin and Synaptobrevin-GFP) and clear-core vesicles along Drosophila Liprin-alpha mutant axons. Analysis of presynaptic markers reveals reduced levels at Liprin-alpha synapses. Direct visualization of Synaptobrevin-GFP transport in living animals demonstrates a decrease in anterograde processivity in Liprin-alpha mutants but also an increase in retrograde transport initiation. Pull-down assays reveal that Liprin-alpha interacts with Drosophila Kinesin-1 (Khc) but not dynein. Together, these findings suggest that Liprin-alpha promotes the delivery of synaptic material by a direct increase in kinesin processivity and an indirect suppression of dynein activation. This work is the first to use live observation in Drosophila mutants to demonstrate the role of a scaffolding protein in the regulation of bidirectional transport. It suggests the synaptic strength and morphology defects linked to Liprin-alpha may in part be due to a failure in the delivery of synaptic-vesicle precursors.
    [Abstract] [Full Text] [Related] [New Search]