These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alternative splicing switches the divalent cation selectivity of TRPM3 channels. Author: Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Journal: J Biol Chem; 2005 Jun 10; 280(23):22540-8. PubMed ID: 15824111. Abstract: TRPM3 is a poorly understood member of the large family of transient receptor potential (TRP) ion channels. Here we describe five novel splice variants of TRPM3, TRPM3alpha1-5. These variants are characterized by a previously unknown amino terminus of 61 residues. The differences between the five variants arise through splice events at three different sites. One of these splice sites might be located in the pore region of the channel as indicated by sequence alignment with other, better-characterized TRP channels. We selected two splice variants, TRPM3alpha1 and TRPM3alpha2, that differ only in this presumed pore region and analyzed their biophysical characteristics after heterologous expression in human embryonic kidney 293 cells. TRPM3alpha1 as well as TRPM3alpha2 induced a novel, outwardly rectifying cationic conductance that was tightly regulated by intracellular Mg(2+). However, these two variants are highly different in their ionic selectivity. Whereas TRPM3alpha1-encoded channels are poorly permeable for divalent cations, TRPM3alpha2-encoded channels are well permeated by Ca(2+) and Mg(2+). Additionally, we found that currents through TRPM3alpha2 are blocked by extracellular monovalent cations, whereas currents through TRPM3alpha1 are not. These differences unambiguously show that TRPM3 proteins constitute a pore-forming channel subunit and localize the position of the ion-conducting pore within the TRPM3 protein. Although the ionic selectivity of ion channels has traditionally been regarded as rather constant for a given channel-encoding gene, our results show that alternative splicing can be a mechanism to produce channels with very different selectivity profiles.[Abstract] [Full Text] [Related] [New Search]