These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of cysteamine supplementation and culture in portable dry-incubator on the in vitro maturation, fertilization and subsequent development of mouse oocytes. Author: Chen N, Liow SL, Yip WY, Tan LG, Ng SC. Journal: Theriogenology; 2005 May; 63(8):2300-10. PubMed ID: 15826691. Abstract: The need to transport oocytes and embryos between two laboratories have prompted us to evaluate the effects of in vitro maturation of immature mouse oocytes in a CO2-deficient dry heat portable incubator and subsequent in vitro development of these fertilized mouse oocytes in a standard CO2 incubator. In addition, the effects of cysteamine supplementation on maturation rate and embryonic development during in vitro maturation (IVM) and culture of embryos in the portable incubator were also investigated. Germinal vesicle stage mouse oocytes, recovered at 40-h post-FSH from 6- to 8-week-old C57BL/6xCBA F1 healthy female mice, were matured in vitro in a modified TCM-199 supplemented with or without 100 microM cysteamine in a standard incubator (5% CO2; 37 degrees C) or cultured in a CO2-deficient dry heat portable incubator for 5 h at 37 degrees C and thereafter transferred to a standard incubator for further culture. The addition of cysteamine in the IVM medium significantly improved maturation rates of the GV mouse oocytes to metaphase II stage. However, cysteamine supplementation in the culture medium did not significantly improve fertilization and blastocyst formation rates of IVM and ovulated oocytes, and in vivo-derived zygotes. Culture conditions in a CO2-deficient dry heat portable incubator did not adversely affect the developmental competence of in vivo-derived zygotes and in vitro matured mouse oocytes after IVF or parthenogenetic activation. Cysteamine supplement in the IVM medium could enhance nuclear maturation of these immature oocytes during shipment.[Abstract] [Full Text] [Related] [New Search]