These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Advances in sequencing technology.
    Author: Chan EY.
    Journal: Mutat Res; 2005 Jun 03; 573(1-2):13-40. PubMed ID: 15829235.
    Abstract:
    Faster sequencing methods will undoubtedly lead to faster single nucleotide polymorphism (SNP) discovery. The Sanger method has served as the cornerstone for genome sequence production since 1977, close to almost 30 years of tremendous utility [Sanger, F., Nicklen, S., Coulson, A.R, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 5463-5467]. With the completion of the human genome sequence [Venter, J.C. et al., The sequence of the human genome, Science 291 (2001) 1304-1351; Lander, E.S. et al., Initial sequencing and analysis of the human genome, Nature 409 (2001) 860-921], there is now a focus on developing new sequencing methodologies that will enable "personal genomics", or the routine study of our individual genomes. Technologies that will lead us to this lofty goal are those that can provide improvements in three areas: read length, throughput, and cost. As progress is made in this field, large sections of genomes and then whole genomes of individuals will become increasingly more facile to sequence. SNP discovery efforts will be enhanced lock-step with these improvements. Here, the breadth of new sequencing approaches will be summarized including their status and prospects for enabling personal genomics.
    [Abstract] [Full Text] [Related] [New Search]