These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular inhibitory effects of Velcade correlate with morphoproteomic expression of phosphorylated-nuclear factor-kappaB and p53 in breast cancer cell lines. Author: Lun M, Zhang PL, Siegelmann-Danieli N, Blasick TM, Brown RE. Journal: Ann Clin Lab Sci; 2005; 35(1):15-24. PubMed ID: 15830705. Abstract: Velcade, a proteasome inhibitor, has been shown to inhibit DNA binding activity of nuclear factor-kappaB (NF-kappaB) and to stabilize p53 in vitro. But its impact, in the context of activated (phosphorylated and translocated) NF-kappaB and the expression of p53, has not been studied in breast cancer. It would be desirable to determine whether or not the immunohistochemical (IHC) expressions of activated NF-kappaB and of p53 can predict the effects of Velcade in viable tumor cells. To answer these questions, we selected 3 breast cancer cell lines (SKBR-3, MDA-175, and MDA-231), which are negative for hormonal receptors, but differ in HER-2/neu expression (strong, mild, and minimal, respectively). The 3 cell lines showed different expressions of phosphorylated (p)- NF-kappaB and p53, as evaluated using immunohistochemistry with visual quantification by brightfield microscopy. After being treated with Velcade for 2 days, MDA-231 cells showed markedly reduced proliferation, followed by SKBR-3 cells, and then by MDA-175 cells. There was strong correlation between the nuclear expression of either p-NF-kappaB or p53 and the inhibitory rate of Velcade in the 3 cell lines (r = 0.987 and 0.807, respectively). Western blotting showed an increase in inhibitor-kappaB (I-kappaB) expression in nuclei of MDA-231 and SKBR-3 cells, but not in MDA-175 cells, following exposure to Velcade. Velcade treatment resulted in cleaved caspase-3 expression in MDA-231 cells and in the overexpression of p53 and p21WAF1 in all 3 cell lines, as evaluated using Western blotting. In summary, morphoproteomic analysis of p-NF-kappaB and p53 can be correlated with the inhibitory effect of Velcade in vitro. We propose that this proliferative inhibition is variably associated with blocking p-NF-kappaB function by upregulation of nuclear I-kappaB, stabilization of p53, and induction of p21WAF1.[Abstract] [Full Text] [Related] [New Search]