These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of fracture gap size on the pattern of long bone healing: a computational study.
    Author: Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M.
    Journal: J Theor Biol; 2005 Jul 07; 235(1):105-19. PubMed ID: 15833317.
    Abstract:
    Following fractures, bones restore their original structural integrity through a complex process in which several cellular events are involved. Among other factors, this process is highly influenced by the mechanical environment of the fracture site. In this study, we present a mathematical model to simulate the effect of mechanical stimuli on most of the cellular processes that occur during fracture healing, namely proliferation, migration and differentiation. On the basis of these three processes, the model then simulates the evolution of geometry, distributions of cell types and elastic properties inside a healing fracture. The three processes were implemented in a Finite Element code as a combination of three coupled analysis stages: a biphasic, a diffusion and a thermoelastic step. We tested the mechano-biological regulatory model thus created by simulating the healing patterns of fractures with different gap sizes and different mechanical stimuli. The callus geometry, tissue differentiation patterns and fracture stiffness predicted by the model were similar to experimental observations for every analysed situation.
    [Abstract] [Full Text] [Related] [New Search]