These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional models for catechol dioxygenases: iron(III) complexes of cis-facially coordinating linear 3N ligands.
    Author: Velusamy M, Mayilmurugan R, Palaniandavar M.
    Journal: J Inorg Biochem; 2005 May; 99(5):1032-42. PubMed ID: 15833326.
    Abstract:
    A series of 1:1 iron(III) complexes of simple and sterically hindered tridentate 3N donor ligands have been synthesized and studied as functional models for catechol dioxygenases. All of them are of the type [FeLCl3], where L is bis(pyrid-2-yl-methyl)amine (L1), N,N-bis(benzimidazol-2-ylmethyl)amine (L2), N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L3), N,N-dimethyl-N'-(pyrid-2-ylmethyl)-ethylenediamine (L4) and N-phenyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L5). They have been characterised by spectral and electrochemical methods. The X-ray crystal structure of the complex [Fe(L4)Cl3] has been successfully determined. The complex crystallizes in the triclinic space group P1 with a = 7.250(6), b = 8.284(3), c = 12.409(4) angstroms, alpha = 80.84(3) degrees, beta = 86.76(6) degrees, gamma = 72.09(7) degrees and Z = 2. It possesses a distorted octahedral geometry in which the L4 ligand is cis-facially coordinated to iron(III) and the chloride ions occupy the remaining coordination sites. The systematic variation in the ligand donor atom type significantly influences the Lewis acidity of the iron(III) center and hence the binding interaction of the complexes with simple and substituted catechols. The spectroscopic and electrochemical properties of the catecholate complexes generated in situ have been investigated. All the complexes catalyze mainly the oxidative intradiol cleavage of 3,5-di-tert-butylcatechol (H2DBC) in the presence of dioxygen, which is unexpected of the cis-facial coordination of the ligands. The rate of intradiol catechol cleavage reaction depends upon the Lewis acidity of iron(III) center and steric demand and hydrogen-bonding functionalities of the ligands. Interestingly, the electron-sink property of N-phenyl substituent in [Fe(L5)Cl3] complex leads to enhancement in rate of cleavage. All these observations provide support to the substrate activation mechanism proposed for intradiol-cleaving enzymes.
    [Abstract] [Full Text] [Related] [New Search]