These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoinduced processes in protonated tryptamine. Author: Kang H, Jouvet C, Dedonder-Lardeux C, Martrenchard S, Charrière C, Grégoire G, Desfrançois C, Schermann JP, Barat M, Fayeton JA. Journal: J Chem Phys; 2005 Feb 22; 122(8):84307. PubMed ID: 15836039. Abstract: The electronic excited state dynamics of protonated tryptamine ions generated by an electrospray source have been studied by means of photoinduced dissociation technique on the femtosecond time scale. The result is that the initially excited state decays very quickly within 250 fs. The photoinduced dissociation channels observed can be sorted in two groups of fragments coming from two competing primary processes on the singlet electronic surface. The first one corresponds to a hydrogen-atom loss channel that creates a tryptamine radical cation. The radical cation subsequently fragments to smaller ions. The second process is internal conversion due to the H-atom recombination on the electronic ground state. Time-dependent density functional theory calculations show that an excited pisigma* state dissociative along the protonated amino N-H stretch crosses both the locally excited pipi* state and the electronic ground state S(0) and thus triggers the photofragmentation reactions. The two processes have equivalent quantum yields, approximately equal to 50% of the fragments coming from the H-atom loss reaction. The two primary reaction paths can clearly be distinguished by their femtosecond pump/probe dynamics recorded on the different fragmentation channels.[Abstract] [Full Text] [Related] [New Search]