These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Operator splitting algorithm for isokinetic SLLOD molecular dynamics.
    Author: Pan G, Ely JF, McCabe C, Isbister DJ.
    Journal: J Chem Phys; 2005 Mar 01; 122(9):094114. PubMed ID: 15836119.
    Abstract:
    We apply an operator splitting method to develop a simulation algorithm that has complete analytical solutions for the Gaussian thermostated SLLOD equations of motion [D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] for a system under shear. This leads to a homogeneous algorithm for performing both equilibrium and nonequilibrium isokinetic molecular dynamics simulation. The resulting algorithm is computationally efficient. In particular, larger integration time steps can be used compared to simulations with regular Gaussian thermostated SLLOD equations of motion. The utility and accuracy of the algorithm are demonstrated through application to the Weeks-Chandler-Anderson fluid. Although strict conservation of the kinetic energy suppresses thermal fluctuations in the system, this algorithm does not allow simulations at lower shear rates than those normally afforded by older nonequilibrium molecular dynamics simulations.
    [Abstract] [Full Text] [Related] [New Search]