These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. Author: Rajoka MI, Ferhan M, Khalid AM. Journal: Lett Appl Microbiol; 2005; 40(5):316-21. PubMed ID: 15836732. Abstract: AIMS: The present investigation deals with the development of thermotolerant mutant strain of yeast for studying enhanced productivity of ethanol from molasses in a fully controlled bioreactor. METHODS AND RESULTS: The parental culture of Saccharomyces cerevisiae ATCC 26602 was mutated using UV treatment. A single thermotolerant mutant was isolated after extensive screening and optimization, and grown on molasses medium in liquid cultures. The mutant was 1.45-fold improved than its wild parent with respect to ethanol productivity (7.2 g l-1 h-1), product yield (0.44 g ethanol g-1 substrate utilized) and specific ethanol yield (19.0 g ethanol g-1 cells). The improved ethanol productivity was directly correlated with titres of intracellular and extracellular invertase activities. The mutant supported higher volumetric and product yield of ethanol, significantly (P<or=0.05) higher than the parental and other strains. The mutated cultures produced 1.8- and 2.6-fold more extracellular and intracellular invertase productivity, respectively, than that produced by its wild parent at 40 degrees C. Thermodynamic studies revealed that the cell system exerted protection against thermal inactivation during formation of products. CONCLUSIONS: A mutant derivative of Sacchromyces cerevisiae with improved productivity of ethanol and invertases has been obtained, which showed concomitant improvement in thermostability of endogenous metabolism for formation of both ethanol and invertases. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of the present study are of commercial value as the mutant can be used for ethanol production in parts of Pakistan where the temperature may go up to 40 degrees C in April. Ethanol product yield coefficient and volumetric productivity, revealed the hyper-productivity of ethanol from molasses at 40 degrees C, which is not appropriate for wild organism.[Abstract] [Full Text] [Related] [New Search]