These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain. Author: Han SH, Murchison D, Griffith WH. Journal: Brain Res Mol Brain Res; 2005 Apr 04; 134(2):226-38. PubMed ID: 15836920. Abstract: Neurons of the basal forebrain (BF) possess unique combinations of voltage-gated membrane currents. Here, we describe subtypes of rat basal forebrain neurons based on patch-clamp analysis of low-voltage activated (LVA) calcium and tetrodotoxin-resistant (TTX-R) sodium currents combined with single-cell RT-PCR analysis. Neurons were identified by mRNA expression of choline acetyltransferase (ChAT+, cholinergic) and glutamate decarboxylase (GAD67, GABAergic). Four cell types were encountered: ChAT+, GAD+, ChAT+/GAD+ and ChAT-/GAD- cells. Both ChAT+ and ChAT+/GAD+ cells (71/75) displayed LVA currents and most (34/39) expressed mRNA for LVA Ca(2+) channel subunits. Ca(v)3.2 was detected in 31/34 cholinergic neurons and Ca(v)3.1 was expressed in 6/34 cells. Three cells expressed both subunits. No single neurons showed Ca(v)3.3 mRNA expression, although BF tissue expression was observed. In young rats (2-4 mo), ChAT+/GAD+ cells displayed larger LVA current densities compared to ChAT+ neurons, while these latter neurons displayed an age-related increase in current densities. Most (29/38) noncholinergic neurons (GAD+ and ChAT-/GAD-) possessed fast TTX-R sodium currents resembling those mediated by Na(+) channel subunit Na(v)1.5. This subunit was expressed predominately in noncholinergic neurons. No cholinergic cells (0/75) displayed fast TTX-R currents. The TTX-R currents were faster and larger in GAD+ neurons compared to ChAT-/GAD- neurons. The properties of ChAT+/GAD+ neurons resemble those of ChAT+ neurons, rather than of GAD+ neurons. These results suggest novel features of subtypes of cholinergic and noncholinergic neurons within the BF that may provide new insights for understanding normal BF function.[Abstract] [Full Text] [Related] [New Search]