These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of light intensity from different curing units upon composite temperature rise.
    Author: Knezević A, Tarle Z, Meniga A, Sutalo J, Pichler G.
    Journal: J Oral Rehabil; 2005 May; 32(5):362-7. PubMed ID: 15842246.
    Abstract:
    The unavoidable consequence of composite resin photopolymerization is temperature rise in tooth tissue. The temperature rise depends not only on the illumination time, but also on light intensity, distance of light guide tip from composite resin surface, composition and shade of composite resin and composite thickness. The most commonly used units for polymerization today are halogen curing units, which emit a large spectrum of wavelengths. A proportion of the spectrum has no influence on degree of conversion and therefore causes unnecessary temperature rise. Units based on light source - blue light emitting diodes (LED), as an alternative for halogen curing units, have been introduced in clinical practice. The aim of this study was to show the influence of the light intensity of curing units Elipar Trilight, Astralis 7 and Lux-o-Max unit on temperature rise in composite resin sample of Tetric Ceram. The temperature was measurement with Metex M-3850 D multimeter with the tip of temperature probe put into unpolymerized composite resin sample 1 mm depth. The highest temperature rise was recorded with standard curing mode for Elipar Trilight halogen curing unit (13.3 +/- 1.21 degrees C after 40 s illumination), while the lowest temperature rise was recorded for the Lux-o-Max unit based on LED technology (5.2 +/- 1.92 degrees C after 40 s illumination).
    [Abstract] [Full Text] [Related] [New Search]