These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data.
    Author: Ahearn TS, Staff RT, Redpath TW, Semple SI.
    Journal: Phys Med Biol; 2005 May 07; 50(9):N85-92. PubMed ID: 15843726.
    Abstract:
    The use of curve-fitting and compartmental modelling for calculating physiological parameters from measured data has increased in popularity in recent years. Finding the 'best fit' of a model to data involves the minimization of a merit function. An example of a merit function is the sum of the squares of the differences between the data points and the model estimated points. This is facilitated by curve-fitting algorithms. Two curve-fitting methods, Levenberg-Marquardt and MINPACK-1, are investigated with respect to the search start points that they require and the accuracy of the returned fits. We have simulated one million dynamic contrast enhanced MRI curves using a range of parameters and investigated the use of single and multiple search starting points. We found that both algorithms, when used with a single starting point, return unreliable fits. When multiple start points are used, we found that both algorithms returned reliable parameters. However the MINPACK-1 method generally outperformed the Levenberg-Marquardt method. We conclude that the use of a single starting point when fitting compartmental modelling data such as this produces unsafe results and we recommend the use of multiple start points in order to find the global minima.
    [Abstract] [Full Text] [Related] [New Search]