These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of electroosmotic flow in nonaqueous capillary electrophoresis.
    Author: Geiser L, Mirgaldi M, Veuthey JL.
    Journal: J Chromatogr A; 2005 Mar 11; 1068(1):75-81. PubMed ID: 15844544.
    Abstract:
    Mobility of the electroosmotic flow (mu(EOF)) in fused-silica capillaries strongly depends on the nature of the background electrolyte. In this study, 27 solvent systems were investigated, namely water, methanol, ethanol, 2-propanol, 1-butanol, acetonitrile (MeCN), formamide, N-methylformamide (NMF), N,N-dimethylformamide and dimethyl sulfoxyde, as well as 8 hydroorganic and 9 organic mixtures. For each system, six mu(EOF) were determined at a different ionic strength in basic conditions, and an absolute electroosmotic flow mobility (mu(EOF,0)) was extrapolated according to the Debye-Huckel Onsager model. The obtained mu(EOF,0) values were correlated with the solvent's relative permittivity (epsilon) and viscosity (eta). A good correlation (r2=0.867) between mu(EOF,0) and the solvent's epsilon/eta ratio was demonstrated, except for two solvents (MeCN and NMF). Furthermore, the donor number (DN) of a solvent took into account the possible zeta potential modification in the electric double layer near the capillary wall. Consequently, the relationship between mu(EOF,0) and epsilon/(eta x DN) was superior, with a r2 of 0.943 for 10 pure solvents.
    [Abstract] [Full Text] [Related] [New Search]