These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Local brain hypothermia for neuroprotection in stroke treatment and aneurysm repair.
    Author: Wagner KR, Zuccarello M.
    Journal: Neurol Res; 2005 Apr; 27(3):238-45. PubMed ID: 15845207.
    Abstract:
    Hypothermia is well known to provide neuroprotection following various brain insults in experimental animals. Two recently completed clinical trials of whole body hypothermia in out-of-hospital cardiac arrest patients' demonstrated significantly improved survival rates and neurologic outcomes. These results provide new excitement and encouragement for clinical application of hypothermia in cerebrovascular disease. However, the intensive care challenges and adverse events (e.g. prolonged times to target temperatures, shivering and sedation, pneumonia) during the management of hypothermia, dampen enthusiasm for widespread application especially in elderly stroke patients. In this manuscript, we review recent hypothermia trials for stroke. We describe an alternate approach, i.e. local brain cooling, and discuss this new technique with reference to the extensive literature on the marked efficacy of hypothermia. We describe a new technology, the ChillerPad(TM) and ChillerStrip(TM) Systems developed by Seacoast Technologies, Inc. (Portsmouth, NH, USA). The latter device has received FDA approval and will be employed in a trial of local hypothermia for cerebral aneurysm repair. We present our experimental findings that profound local hypothermia does not damage cortical neurons. We also report that local hypothermia protects the blood-brain barrier and markedly reduces vasogenic edema development in an experimental intracerebral hemorrhage model. Lastly, we review potential mechanisms through which hypothermia provides blood-brain barrier protection and reduces edema formation. Clearly, hypothermia has a bright future for cerebrovascular disease treatment if brain cooling can be delivered in a manner that does not compromise the patient or the neurosurgical and intensive care settings. Local brain cooling may be just that new treatment approach.
    [Abstract] [Full Text] [Related] [New Search]