These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective cyclooxygenase (COX) inhibition causes damage to portal hypertensive gastric mucosa: roles of nitric oxide and NF-kappaB.
    Author: Akahoshi T, Tanigawa T, Sarfeh IJ, Chiou SK, Hashizume M, Maehara Y, Jones MK.
    Journal: FASEB J; 2005 Jul; 19(9):1163-5. PubMed ID: 15845610.
    Abstract:
    Portal hypertension (PHT) is associated with increased susceptibility of the gastric mucosa to injury by a variety of factors, including nonsteroidal anti-inflammatory drugs (NSAIDs) that nonselectively inhibit both isoforms of cyclooxygenase (COX-1 and -2). PHT gastric mucosa also has excessive nitric oxide (NO) production that contributes to the general increased susceptibility to injury. Using a rat model of PHT, we studied whether selective COX inhibition, which does not damage normal (normotensive) gastric mucosa, is sufficient to cause PHT gastric damage and, if so, whether and how excessive NO is involved. Indomethacin, a nonselective NSAID, caused 2.4-fold more gastric injury to PHT vs. normotensive sham-operated (SO) control rats. Neither NS-398 nor celecoxib, selective COX-2 inhibitors, caused gastric damage in either SO or PHT rats. SC-560, a selective COX-1 inhibitor, did not cause gastric damage in SO rats but dose-dependently caused gastric damage in PHT rats. There was a compensatory increase in COX-2 expression and activity in SC-560-treated SO rats but not SC-560-treated PHT rats. Partial inhibition of NO production restored gastric COX-2 expression and activity levels in SC-560-treated PHT rats to those of SC-560-treated SO rats, by a mechanism consistent with induction of NF-kappaB, and significantly reduced gastric damage. These studies indicate that, in contrast to normotensive gastric mucosa, inhibition of COX-1 alone is sufficient to cause PHT gastric damage as a result of excessive NO that prevents the induction of NF-kappaB and the compensatory increase in COX-2.
    [Abstract] [Full Text] [Related] [New Search]