These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dihydrogen complexes of rhodium: [RhH2(H2)x (PR3)2]+ (R = Cy, iPr; x = 1, 2). Author: Ingleson MJ, Brayshaw SK, Mahon MF, Ruggiero GD, Weller AS. Journal: Inorg Chem; 2005 May 02; 44(9):3162-71. PubMed ID: 15847423. Abstract: Addition of H2 (4 atm at 298 K) to [Rh(nbd)(PR3)2][BAr(F)4] [R = Cy, iPr] affords Rh(III) dihydride/dihydrogen complexes. For R = Cy, complex 1a results, which has been shown by low-temperature NMR experiments to be the bis-dihydrogen/bis-hydride complex [Rh(H)2(eta2-H2)2(PCy3)2][BAr(F)4]. An X-ray diffraction study on 1a confirmed the {Rh(PCy3)2} core structure, but due to a poor data set, the hydrogen ligands were not located. DFT calculations at the B3LYP/DZVP level support the formulation as a Rh(III) dihydride/dihydrogen complex with cis hydride ligands. For R = iPr, the equivalent species, [Rh(H)2(eta2-H2)2(P iPr3)2][BAr(F)4] 2a, is formed, along with another complex that was spectroscopically identified as the mono-dihydrogen, bis-hydride solvent complex [Rh(H)2(eta2-H2)(CD2Cl2)(P iPr3)2][BAr(F)4] 2b. The analogous complex with PCy3 ligands, [Rh(H)2(eta2-H2)(CD2Cl2)(PCy3)2][BAr(F)4] 1b, can be observed by reducing the H2 pressure to 2 atm (at 298 K). Under vacuum, the dihydrogen ligands are lost in these complexes to form the spectroscopically characterized species, tentatively identified as the bis hydrides [Rh(H)2(L)2(PR3)2][BAr(F)4] (1c R = Cy; 2c R = iPr; L = CD2Cl2 or agostic interaction). Exposure of 1c or 2c to a H2 atmosphere regenerates the dihydrogen/bis-hydride complexes, while adding acetonitrile affords the bis-hydride MeCN adduct complexes [Rh(H)2(NCMe)2(PR3)2][BAr(F)4]. The dihydrogen complexes lose [HPR3][BAr(F)4] at or just above ambient temperature, suggested to be by heterolytic splitting of coordinated H2, to ultimately afford the dicationic cluster compounds of the type [Rh6(PR3)6(mu-H)12][BAr(F)4]2 in moderate yield.[Abstract] [Full Text] [Related] [New Search]