These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the covalent glutamic acid 242-heme linkage in the formation and reactivity of redox intermediates of human myeloperoxidase.
    Author: Zederbauer M, Jantschko W, Neugschwandtner K, Jakopitsch C, Moguilevsky N, Obinger C, Furtmüller PG.
    Journal: Biochemistry; 2005 May 03; 44(17):6482-91. PubMed ID: 15850382.
    Abstract:
    In human myeloperoxidase the heme is covalently attached to the protein via two ester linkages between the carboxyl groups of Glu242 and Asp94 and modified methyl groups on pyrrole rings A and C of the heme as well as a sulfonium ion linkage between the sulfur atom of Met243 and the beta-carbon of the vinyl group on pyrrole ring A. In the present study, wild-type recombinant myeloperoxidase (recMPO) and the variant Glu242Gln were produced in Chinese hamster ovary cells and investigated in a comparative sequential-mixing stopped-flow study in order to elucidate the role of the Glu242-heme ester linkage in the individual reaction steps of both the halogenation and peroxidase cycle. Disruption of the ester bond increased heme flexibility, blue shifted the UV-vis spectrum, and, compared with recMPO, decelerated cyanide binding (1.25 x 10(4) versus 1.6 x 10(6) M(-)(1) s(-)(1) at pH 7 and 25 degrees C) as well as compound I formation mediated by either hydrogen peroxide (7.8 x 10(5) versus 1.9 x 10(7) M(-)(1) s(-)(1)) or hypochlorous acid (7.5 x 10(5) versus 2.3 x 10(7) M(-)(1) s(-)(1)). The overall chlorination and bromination activity of Glu242Gln was 2.0% and 24% of recMPO. The apparent bimolecular rate constants of compound I reduction by chloride (65 M(-)(1) s(-)(1)), bromide (5.4 x 10(4) M(-)(1) s(-)(1)), iodide (6.4 x 10(5) M(-)(1) s(-)(1)), and thiocyanate (2.2 x10(5) M(-)(1) s(-)(1)) were 500, 25, 21, and 63 times decreased compared with recMPO. By contrast, Glu242Gln compound I reduction by tyrosine was only 5.4 times decreased, whereas tyrosine-mediated compound II reduction was 60 times slower compared with recMPO. The effects of exchange of Glu242 on electron transfer reactions are discussed.
    [Abstract] [Full Text] [Related] [New Search]