These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mushroom tyrosinase: catalase activity, inhibition, and suicide inactivation.
    Author: García-Molina F, Hiner AN, Fenoll LG, Rodríguez-Lopez JN, García-Ruiz PA, García-Cánovas F, Tudela J.
    Journal: J Agric Food Chem; 2005 May 04; 53(9):3702-9. PubMed ID: 15853423.
    Abstract:
    Mushroom tyrosinase exhibits catalase activity with hydrogen peroxide (H(2)O(2)) as substrate. In the absence of a one-electron donor substrate, H(2)O(2) is able to act as both oxidizing and reducing substrate. The kinetic parameters V(max) and K(m) that characterize the reaction were determined from the initial rates of oxygen gas production (V(0)(O)()2) under anaerobic conditions. The reaction can start from either of the two enzyme species present under anaerobic conditions: met-tyrosinase (E(m)) and deoxy-tyrosinase (E(d)). Thus, a molecule of H(2)O(2) can reduce E(m) to E(d) via the formation of oxy-tyrosinase (E(ox)) (E(m) + H(2) <==> O(2) right harpoon over left harpoon E(ox)), E(ox) releases oxygen into the medium and is transformed into E(d), which upon binding another molecule of H(2)O(2) is oxidized to E(m). The effect of pH and the action of inhibitors have also been studied. Catalase activity is favored by increased pH, with an optimum at pH = 6.4. Inhibitors that are analogues of o-diphenol, binding to the active site coppers diaxially, do not inhibit catalase activity but do reduce diphenolase activity. However, chloride, which binds in the equatorial orientation to the protonated enzyme (E(m)H), inhibits both catalase and diphenolase activities. Suicide inactivation of the enzyme by H(2)O(2) has been demonstrated. A kinetic mechanism that is supported by the experimental results is presented and discussed.
    [Abstract] [Full Text] [Related] [New Search]